
Dynamic instability of a disk forced by a pulse of
short duration

Michael El-Raheb *

1000 Oak Forest Lane, Pasadena, CA 91107, USA

Received 23 April 2001; received in revised form 24 March 2002

Abstract

A dynamic analysis is presented for circumferential buckling of a disk induced by transient axisymmetric flexural

deformation from a pulse of short duration. A perturbation solution is adopted in solving the coupled non-linear

stability equations, utilizing the asymmetric dynamic eigenfunctions of the disk as trial functions in the Galerkin

procedure. Static buckling is treated first to demonstrate the utility of the stability analysis and evaluate how critical

stress and circumferential wave number of the buckling mode depend on disk radius and thickness. In the dynamic case,

transient response is the evolution in time of an axisymmetric deformation shape bounded by the shear wave front.

Dynamic stability from induced inplane stresses of asymmetric perturbations is characterized by their divergence in

time. The dynamic buckling mode is that mode growing fastest over a fixed period of time after impact. � 2002
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1. Introduction

Observations of experiments on thin brittle disks and square plates struck centrally by a cylindrical
projectile show a common mode of failure: cracking along radial lines with equiangular spacing which
suggests a critical stress that varies periodically along the circumference with peaks along the radial cracks.
Since the applied pressure from impact is axisymmetric, purely linear analysis predicts an axisymmetric
response and fails to explain the asymmetry of the observed failure mode. The only phenomenon consistent
with this mode of failure is dynamic instability growing from initial asymmetric imperfections along the
perimeter of the disk or plate. The instability is caused by negative circumferential stress rh induced by large
flexural deformation.

Static buckling of a disk has been treated extensively in the literature. One of the earliest analyti-
cal treatments dates back to 1930, as quoted in Timoshenko and Woinowsky-Krieger’s textbook (1959).
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Over 160,000 references treat static buckling of rectangular plates by the finite element method. Only 60
references treat buckling of a disk and among these, only three include inertial effects adopting a semi-
analytical method. In these references, dynamics implies response from loading with periodic time de-
pendence at a single frequency. None of these references considers analysis of buckling in a transient wave
environment. From this list of references, there is space here to pick only a few representing various
methods of solution. Bolotin’s monogram on dynamic stability (Bolotin, 1956) presents a fundamental
treatise on dynamic buckling of elastic systems. Chen and Juang (1987) and Bhushan et al. (1996) adopt
finite elements to solve the non-linear and linearized stability equations. Tani and Yamaki (1981) treats
stability and the effect on eigenfrequency of inplane stresses by the finite difference method. Yamaki et al.
(1981), Laura et al. (1995), Shih et al. (1995), and Krizghevsky and Stavsky (1998) use the Galerkin method
to determine stability in the frequency domain. Nath et al. (1985) adopts the Chebyshev collocation method
to solve the static and free vibration stability equation. Turvey (1978), and Khadkhodayan et al. (1997)
apply the method of dynamic relaxation to the buckling analysis for statics and free vibrations. Kolegov
et al. (1991) studies experimentally how buckling deflection of disks changes with impulsive load for dif-
ferent diameters and thicknesses. This is the only reference reporting transient collapse.

In the analysis to be presented below, static buckling is treated by a linear perturbation solution of the
coupled non-linear equations. The static axisymmetric flexural deformation w0ðrÞ from applied pressure p
acting over a concentric circular footprint is solved analytically adopting Mindlin’s equations for a disk.
The non-linear function in w0ðrÞ and its derivatives forcing the inplane equilibrium equation yields the
induced inplane stresses rr and rh appearing in the stability equation governing the asymmetric displace-
ment wnðr; hÞ where n is circumferential wave number. The asymmetric dynamic eigenfunctions of the disk
serve as trial functions in a Galerkin solution. Critical pressure pcr corresponds to that n ¼ ncr for which
buckling pressure pðnÞ achieves a minimum.

The deformation of a disk forced by a pulse of short duration is confined by the shear wave front with
instantaneous radius rw. During the application of the external load, as rw increases with time so does
amplitude of the instantaneous deformed shape. As with static buckling, dynamic displacement induces a
compressive rh that causes displacement to diverge. The linear unsteady Mindlin’s equations of the disk
forced by the pressure pulse are solved by modal analysis. The resulting axisymmetric displacement w0ðr; tÞ
is utilized to compute rr0 and rh0. The time when the lowest eigenvalue vanishes marks the threshold of
stability for some n. That n yielding the largest unstable growth of rhn for some fixed elapsed time from
impact determines the most dynamically unstable mode. Parameters important in static buckling, such as
disk radius rd, aspect ratio rd=h where h is thickness, and modulus E, are now replaced by instantaneous
radius of the wave front rw, instantaneous aspect ratio rw=h, and phase velocity cp. Unlike the static case
where critical rhn occurs near the edge, in the dynamic case critical rhn may occur at rw < rd. In turn, w0ðr; tÞ
must reach larger values than in statics to attain the threshold of stability.

Sections 1.1 and 1.2 formulate the pre-buckling axisymmetric state and the asymmetric stability equation
for static buckling and dynamic instability. Section 2 discusses the sensitivity of pcr to rd and h for a static
problem, and extends the results to wave propagation explaining how it differs from the simpler static
problem.

1.1. Static analysis

When a thin disk is loaded axisymmetrically, lateral displacement w0 from flexure induces inplane
stresses rr0 and rh0. If the disk boundary is stress free in its plane, rh0 changes from tensile near the disk
center to compressive near its boundary (see Timoshenko and Woinowsky-Krieger, 1959). Except for a disk
fully clamped along the perimeter, this reversal of rh0 along r occurs for both free and simply supported
boundaries. The compressive rh0 may buckle the disk along the perimeter.
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Consider the inplane static equilibrium equation for axisymmetric deformation

orr0

or
þ rr0 � rh0

r
¼ 0 ð1Þ

For plane strain, the constitutive law simplifies to

rr0 ¼
E

1 � m2
u00

�
þ 1

2
w0

0

� �2 þ mu0

r

�
ð2aÞ

rh0 ¼
E
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mu00
�

þ m
2
ðw0

0Þ
2 þ u0

r

�
ð2bÞ

where u0 is radial displacement and ( )0 stands for partial derivative with respect to variable r. The term
ð1=2Þðw0

0Þ
2

is the non-linear radial strain coupling transverse to inplane variables. Substituting (2a) and (2b)
in (1) yields
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In-plane stresses ðrr0; rh0Þ multiplied by curvature produce non-linear shear terms modifying the w equi-
librium equation to

Dr4w � hrr0w00 � hrh0
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�
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r
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; D ¼ Eh3

12ð1 � m2Þ
where HðrÞ is the Heaviside function and h is the circumferential angle. The coupled non-linear Eqs. (3) and
(4) in u0 and w govern the stability of the disk.

An axisymmetric load applied to an axisymmetric geometry cannot induce circumferentially asymmetric
modes. Asymmetry may result either from loading or geometric imperfections pi and wi. Magnification of
these asymmetric perturbations with applied load is the basis of bifurcation from an almost axisymmetric
response to an asymmetric instability. Let pðr; h; tÞ be the total applied forcing pressure made of an axi-
symmetric part p0 of order unity and an asymmetric part pi of much smaller magnitude. Also let wi be the
geometric imperfection. For simplicity, consider a Fourier expansion of pi and wi in terms of circumfer-
ential harmonics

pðr; h; tÞ ¼ ðp0 þ piðhÞÞfpðtÞ

piðhÞ ¼ ep
XN
n¼2

cosðnhÞ; wiðr; hÞ ¼ ewr
XN
n¼2

cosðnhÞ
ð5Þ

where fpðtÞ is time dependence of p and equals unity for a static problem, and ep and ew are magnitudes of
loading and geometric imperfections so that ep � p0, ew ¼ oðw0Þ. Since an n ¼ 0 imperfection does not
induce asymmetry, and since an n ¼ 1 imperfection corresponds to a rigid body translation or rotation,
only harmonics with nP 2 are included in the expansions of Eq. (5). In practice, the geometric imperfection
in a disk is larger at the perimeter than it is near the center. Also, continuity of wi at r ¼ 0 for n > 0 requires
it to vanish there. The simplest radial function meeting these two requirements is linear with r as described
in Eq. (5). Both ep and ew are assumed to have the same magnitude for all circumferential harmonics. This
choice which assumes equal weight of all loading imperfections will show if the unstable mode has a
preferential n.
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Numerical solution of the set (3) and (4) determines p as a function of w. An instability occurs when the
slope of the line p versus w becomes negative, indicating that strain energy ceases to be positive definite.
Another way to determine critical pressure pcr is to solve the non-linear set (3) and (4) adopting a linearized
perturbation method. Express ðu;wÞ as the sum of an axisymmetric term of Oð1Þ and an asymmetric term of
order oðeÞ

uðr; hÞ ¼ u0ðrÞ þ unðrÞ sin nh

wðr; hÞ ¼ w0ðrÞ þ wnðrÞ cos nh
ð6Þ

where n is an integer circumferential wave number. Substituting (6) in (3) and (4) and equating terms of the
same order of smallness in e yields

Dr4
0w0 ¼ p0½HðrÞ � Hðr � rpÞ
 ð7aÞ
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00
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where the right hand side of (7c) is a known forcing term. The functional Gðr0;wnÞ is geometric stiffness
from asymmetric displacement, and Gðr0; rÞ is geometric stiffness from initial imperfection. These account
for shear forces produced by initial axisymmetric stresses acting on curvature from asymmetric displace-
ment and geometric imperfection. Eq. (7a) governs the pre-buckling static axisymmetric displacement w0ðrÞ
from the applied pressure p. Once w0 is determined, the functional W0 becomes a known function of r.
Substituting W0ðw0ðrÞÞ in (7b) and expressing r2

1 as

r2
1u0 �

o

or
1

r
o

or
ðru0Þ

� �
ð7dÞ

then integrating (7a) yields u0ðrÞ

u0ðrÞ ¼ � 1

r

Z r

0

g
Z g

0

W0ðnÞdndg þ C1r þ C2=r ð8Þ

where C1, C2 are constants of integration. C2 drops out because the solution is bounded at r ¼ 0. Substi-
tuting (8) into (2a) and (2b) produces

rr0ðrÞ ¼
E

1 � m2

ð1 � mÞ
r2

Z r

0

g
Z g

0
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Evaluating (9a) at r ¼ rd and equating to zero for a stress-free boundary determines C1

ð1 þ mÞC1 ¼ �ð1 � mÞ
r2

d

Z rd

0

g
Z g

0

W0ðnÞdndg þ
Z rd

0

W0ðnÞdn � 1

2
ðw0

0ðrdÞÞ2 ð9cÞ
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Substituting (9c) in (9b) yields the expression for rh0ðrÞ

rh0ðrÞ ¼
E

1 � m2



� ð1 � mÞ
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Z r

0

g
Z g

0
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Since dkw0=drk is proportional to p, and ðrr0; rh0Þ are proportional to ðdkw0=drkÞ2
, then expressing

r0 ¼ r̂r0p2
0 brings p0 explicitly in Eq. (7c)

Dr4
nwn � p2

0Gðr̂r0;wnÞ ¼ ep þ ewGðr̂r0; rÞ ð10aÞ

Approximating wn by trial functions unj

wnðrÞ ¼
X

j

CnjunjðrÞ ð10bÞ

then substituting (10b) in (10a), multiplying both sides by runkðrÞ and integrating over the domain produces
the matrix equation

½M1n �M2nIp2
0
Cn ¼ Rnpep þ Rnwew ð10cÞ

M1njk ¼
Z rd

0

Dr4
0ðunjÞunkrdr; Rnpk ¼

Z rp

0

unkðrÞrdr

M2njk ¼
Z rd

0

Gðr̂r0;unjÞunkrdr; Rnwk ¼
Z rd

0

Gðr̂r0; rÞrdr

) Cn ¼ ½M1n �M2nIp2
0


�1ðRnpep þ RnwewÞ

The weight runkðrÞ is used instead of unkðrÞ alone consistent with cylindrical coordinates and the fact that if
unkðrÞ were a set of orthogonal eigenfunctions then orthogonality may be utilized to simplify calculations.
In (10c) Cn diverges at characteristic values of p0 for which

det jM1n �M2nIp2
0j ¼ 0 ð10dÞ

yielding the critical pressure pcr as the smallest eigenvalue of (10d).
The concept of functional form is presented below. The solution to a system of linear ordinary differ-

ential equations can be expressed as the sum of primitives which are functions of the independent variables
and parameters, multiplied by coefficients that depend only on the parameters. If the primitives are inde-
pendent of the parameters and all coefficients share the same dependence on these parameters, then the
functional form of the solution is independent of the parameters. This means that the normalized shape of
the solution is independent of the parameters while its magnitude may vary by a constant multiplicative
factor. This definition may be cast in mathematical form as

Sðai; xmÞ ¼ CðaiÞ
X

j

bjPjðkmxmÞ ð11Þ

where Sðai; xmÞ is the solution function, ai are the parameters, xm are the independent variables, CðaiÞ is a
function of parameters only, bj are constants, and PjðkmxmÞ are primitives of the differential operator and
are functions of constants km and xm. The functional form of the solution given by Eq. (11) is independent of
ai.
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Consider the following two forms for w0ðrÞ in (7a) and (7b):

1. the approximation w0ðrÞ ¼ J0ðk0rÞ where J 00
0 ðk0rdÞ ¼ 0 is a non-natural boundary condition approximat-

ing simple supports,
2. the static axisymmetric displacement w0ðrÞ satisfying (7a) (see Appendix A),

where JmðkmrÞ, m ¼ 0, 1 is the Bessel function and km is radial wave number. Similarly, consider the fol-
lowing two forms for wnðr; hÞ in (7c):

1. the approximation wnðr; hÞ ¼ cosðnhÞJnðknrÞ where J 00
n ðknrdÞ ¼ 0 approximates the same boundary condi-

tion as that for w0ðrÞ,
2. the asymmetric eigenfunctions of the homogeneous dynamic Mindlin’s equations (see Appendix B).

Substituting the one-term approximations above in Eqs. (7a)–(7c) yields

w0ðrÞ ¼ pcr

R rp
0

J0ðk0rÞrdr

Dk4
0

R rd

0
J 2

0 ðk0rÞrdr
J0ðk0rÞ ð12aÞ

pcr ¼
Dk4

n

R rd

0
J 2
n ðknrÞrdrR rd

0
gðrÞJnðknrÞrdr

ð12bÞ

gðrÞ ¼ hrr0k2
nJ

00
n ðknrÞ þ hrh0

kn

r
J 0
nðknrÞ

�
� n2

r2
JnðknrÞ

�
ð12cÞ

where J 0
nðknrÞ is derivative with respect to the argument ðknrÞ. Applying dimensional analysis to Eqs. (12a)–

(12c) reveals that

pcr /
Eh4

r2
dr2

p

ð12dÞ

Clearly, the explicit dependence on rd=h and rp=rd of w0 in (12a), u0 in (7b) and ðrr0; rh0Þ in (9a) and (9d),
renders the functional form of ðrr0; rh0Þ independent of rd=h and rp=rd while magnitude is within a mul-
tiplicative scaling factor r0:

r0 ¼
E

ð1 � m2Þ
p2

0

ðDk4
0rdÞ2

ð12eÞ

Since n of the critical mode depends primarily on the functional form of ðrr0; rh0Þ, it also is independent of
rd=h and rp=rd. Consequently, the one-term approximation predicts that n of the buckling mode is inde-
pendent of rd=h and rp=rd.

Express wnðr; hÞ in terms of the dynamic eigenfunctions of the disk (See Appendix B)

wnðr; hÞ ¼ cos nh
X

j

djunjðrÞ ð13Þ

Substituting (13) into (7c), then eliminating the r dependence by multiplying (7c) by runkðrÞ and integrating
from zero to rd yields

Mnd ¼ R0 ð14aÞ

Mnjk ¼ Fnjk � Gnjk ð14bÞ
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Fnjk ¼ D
Z rd

0

r4
nðunjÞunkrdr

Gnjk ¼ h
Z rd

0

rr0u
00
nj



þ rh0

1

r
u0
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�
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ð14cÞ

R0k ¼ h
Z rd

0

rr0w00
0

�
þ rh0

w0
0

r

�
unkrdr ð14dÞ

From (B.22c), unjðrÞ in (14c) and (14d) takes the form

unðrÞ ¼
X2

j¼1

CnjJnðknjrÞ ðsee ðB:22cÞÞ

) r4
nunðrÞ ¼

X2

j¼1

Cnjk4
njJnðknjrÞ ð14eÞ

The critical pressure is reached when p2
0 factoring rr0 and rh0 in (14d) is the smallest eigenvalue of

det jMnj ¼ 0 ð14fÞ

1.2. Dynamic analysis

In the dynamic case, w0ðr; tÞ is determined adopting a modal solution to the axisymmetric Mindlin’s
equation (see El-Raheb and Wagner (1987))

w0ðr; tÞ ¼
X

j

ajðtÞu0jðrÞ ð15aÞ

ajðtÞ ¼ � Nfj

xjN0j

Z t

0

fpðsÞ sin xjðt � sÞds ð15bÞ

where fxj;u0jg is the eigenset, fpðtÞ is defined in Eq. (5), and

Nfj ¼ p0

Z rp

0

u0jðrÞrdr; N0j ¼
Z rd

0

u2
0jðrÞ



þ h2

12r2
d

g2
0jðrÞ

�
rdr

At every time step t, w0ðr; tÞ, determined from (15a) and (15b), forms the instantaneous functional
W0½w0ðr; tÞ
.

The dynamic counterpart of (7b) is

r2
1u0 �

1

c2
e

o2u0

ot2
¼ �W0ðr; tÞ; ce ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1 � m2Þ

s
ð16Þ

Expressing u0ðr; tÞ in terms of its eigenset f �xxj; J1ðcjrÞg

u0ðr; tÞ ¼
X

j

cjðtÞJ1ðcjrÞ; cj ¼
�xxj

ce
ð17aÞ

The stress-free boundary condition rr0ðrdÞ ¼ 0 imposes the dispersion relation

ðcjrdÞJ 0
1ðcjrdÞ þ mJ1ðcjrdÞ ¼ 0 ð17bÞ
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which determines the eigenvalues �xxj. Substituting (17a) in (16) and exploiting orthogonality of J1ðcjrÞ yields

€ccj þ �xx2
j cj ¼

NujðtÞ
N 0j

ð18Þ

NujðtÞ ¼
Z rd

0

W0ðr; tÞJ1ðcjrÞrdr; N 0j ¼
1

c2
e

Z rd

0

J 2
1 ðcjrÞrdr

Eq. (18) admits a solution

cjðtÞ ¼ � 1

�xxjN 0j

Z t

0

sin �xxjðt � sÞNujðsÞds ð19Þ

which determines u0ðr; tÞ from (17a) and subsequently rr0 and rh0 from (2a) and (2b).
The procedure for determining the threshold of dynamic stability is now outlined. Start with the dy-

namic counterpart of (7c) (see Eq. (B.4))

D r2
n

�

� 1

c2
e

o2

ot2

�
r2

n

�
� 1

c2
s

o2

ot2

�
þ 12

c2
eh2

o2

ot2

�
wn � Gðr0;wnÞ ¼ epfpðtÞ þ ewGðr0; rÞ ð20Þ

From Eq. (5), the asymmetric loading imperfection ep follows the same functional dependence on t as p0.
Assume the eigenset funj; grnj; ghnjg derived in Appendix B as trial functions to solve wn in Eq. (20)

wnðr; tÞ ¼
X

j

dnjðtÞunjðrÞ ð21Þ

Substituting (21) in (20), then eliminating the r dependence by exploiting orthogonality of the eigenset
yields

Nnð€ddn þ Ix2
ndnÞ �HnðtÞdn ¼ RnpepfpðtÞ þ Rnwew ð22aÞ

where _ð Þð Þ is derivative with respect to time, xn are the eigenvalues of the axisymmetric problem in Eqs.
(15a) and (15b) and

Nnjk ¼ qhdjk

Z rd

0

u2
nj



þ h2

12
ðg2

rnj þ g2
hnjÞ
�
rdr ð22bÞ

HnjkðtÞ ¼
Z rd

0

Gðr0;unjÞunkrdr; Rnpk ¼
Z rp

0

unkrdr; Rnwk ¼
Z rd

0

Gðr0; rÞunkrdr

where djk is the Kronecker delta. Combining coefficients of dn in (22a) yields

€ddn þ ½Ix2
n �N�1

n HnðtÞ
dn ¼ N�1
n ½RnpepfpðtÞ þ Rnwew
 ð23Þ

HnðtÞ is a time-dependent geometric stiffness matrix. The coupled Eq. (23) describe the evolution of the
asymmetric mode with n circumferential waves. For some fixed t ¼ tcr, Eq. (23) become unstable when one
or more components of the instantaneous eigenvalue x̂xnðtcrÞ vanish,

x̂xnkðtcrÞ ¼ 0; k ¼ kcr ð24aÞ
where k is radial wave number. x̂xnðtÞ diagonalizes (23) and satisfies the time-dependent eigenvalue problem

Ix̂x2
nðtÞ � ½Ix2

n �N�1
n HnðtÞ
 ¼ 0 ð24bÞ

Condition (24a) is the onset of dynamic instability. Since ðrr0; rh0Þ in HnðtÞ are time-dependent and rise with
w0ðtÞ, more than one mode will become unstable while the forcing function acts. This means that for each
ðn; kÞ dyad, a tcr is reached when (24a) is satisfied. The growth of the unstable modes with time is according
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to the solution of the coupled Eq. (23) for each n. That mode growing fastest corresponds to the dominant
asymmetric dynamic buckling mode with ncr circumferential waves.

2. Results

Results are presented in two parts. The first part discusses static buckling while the second part discusses
dynamic divergence from impulsive loading. In all numerical simulations, the disk has a radius rd ¼ 3 in.
and thickness h ¼ 0:1, 0.2 or 0.3 in. The disk is forced by a uniform concentric pressure acting over a circle
of radius rp ¼ 0:2 or 0.5 in. The ðh; rpÞ dyad for each of the six cases is listed in Table 1.

For flexural motions of the disk, the perimeter is simply supported, i.e. MrrðrdÞ � whðrdÞ � wðrdÞ ¼ 0 (see
Eq. (B.24b)). For motions in the plane of the disk, the perimeter is stress free, i.e. rr0ðrdÞ ¼ 0. The material
properties of the disk are

E ¼ 45 � 106 lb=in:2; q ¼ 3 � 10�4 lb s2=in:4; m ¼ 0:25 ð25Þ
The prebuckling static axisymmetric flexural response is computed by the exact solution derived in Ap-
pendix A. Displacement and its derivatives are then used to compute W0ðrÞ in Eqs. (9a) and (9b) yielding the
induced stresses in the plane of the disk. For p0 ¼ 1, the distribution along r of ðrr0; rh0Þ for cases 1, 2, 3 and
5 in Table 1 are shown in Fig. 1(a–d). Note that for all cases rh0 turns negative near r=rd ¼ 0:43, and that
the functional form of ðrr0; rh0Þ=rmax is as predicted by the simpler one term solution in Eqs. (12a)–(12e),
independent of h and rp.

The transition of rh0 from positive near disk center to negative near the perimeter can be explained in
two ways. The first relies on the mathematical form of the constituents in Eq. (9d) rewritten below for
convenience

rh0ðrÞ ¼
E

1 � m2



� ð1 � mÞ

r2

Z r

0

g
Z g

0

W0ðnÞdndg � m
Z r

0

W0ðnÞdn þ m
2
ðw0

0ðrÞÞ
2

� ð1 � mÞ
r2

d

Z rd

0

g
Z g

0

W0ðnÞdndg þ
Z rd

0

W0ðnÞdn � 1

2
ðw0

0ðrdÞÞ2

�
ðsee ð9dÞÞ

Since W0ðnÞ is positive definite as evidenced from Eq. (7b), it is clear that in Eq. (9d) the groups formed by
terms (1,4) and (3,6) are negative definite and the group formed by terms (2,5) is positive definite. At r ¼ 0,
the first three terms in (9d) vanish because the upper limit of the integrals is zero, and w0

0ð0Þ ¼ 0 from
axisymmetry. Since

ð1 � mÞ
r2

d

Z rd

0

g
Z g

0

W0ðnÞdndg <
ð1 � mÞ

2

Z rd

0

W0ðnÞdn and

Z rd

0

W0ðnÞdn >
1

2
ðw0

0ðrdÞÞ2

Table 1

h and rp for cases 1–6

Case h (in.) rp (in.)

1 0.1 0.2

2 0.2 0.2

3 0.3 0.2

4 0.1 0.5

5 0.2 0.5

6 0.3 0.5
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then rh0ð0Þ satisfies the inequality

rh0ð0Þ >
E

ð1 � m2Þ
ð1 þ mÞ

2

Z rd

0

W0ðnÞdn



� ð1 � mÞ

2
ðw0

0ðrdÞÞ2

�

and is positive definite. Based on the same approximations above, rh0ðrdÞ reduces to

rh0ðrdÞ <
E

ð1 � m2Þ



� ð1 � mÞ

Z rd

0

W0ðnÞdn þ ð1 � mÞ
Z rd

0

W0ðnÞdn � ð1 � mÞ
2

ðw0
0ðrdÞÞ2

�

< � E
2ð1 þ mÞ ðw

0
0ðrdÞÞ2

which is negative definite.
The other way to explain the transition is from physical grounds. Consider an unconstrained thin disk

resting on a frictionless ring near the disk boundary. A concentrated force applied at the center of the disk
produces axial deformation from flexure and radial deformation towards the center to compensate for an
almost constant intrinsic length of the disk

R r
0
ð1 þ ðw0

0Þ
2Þ1=2

dr. This means that the radial station on the disk
at the supporting ring slides inward. The difference in length of perimeters at the support between un-
deformed and deformed shapes accounts for the compressive rh0.

For each n, expanding wn according to Eqs. (12a)–(12e) including the first five radial wave numbers
yields the eigenmatrix in Eqs. (14a)–(14d). Its solution determines pcrðnÞ. Fig. 2(a–d) plots pcr versus n for

Fig. 1. Radial distribution of static inplane ðrr0; rh0Þ.
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cases 1, 2, 3 and 5. Note that all cases share the following characteristics independent of h and rp; pcr falls
steeply between n ¼ 2 and 3, reaches a minimum at n ¼ 5 then rises slowly for n > 5. In fact this result
agrees with that in Section 1.1 using the one-term approximation for wn. This insensitivity to h and rp of ncr

follows that of ðrr0; rh0Þ=rmax depicted in Fig. 1(a–d). This suggests that ðrr0;rh0Þ=rmax control the shape of
the buckling mode. To explain this behavior, refer to Eq. (7b) governing inplane motion of the disk. The
functional form of u0 depends only on W0ðw0;w0

0;w
00
0Þ, while the functional forms of w0, w0

0, w00
0 are inde-

pendent of h (see Eqs. (A.4a) and (A.5a)) and depend weakly on rp for rp � rd. Since buckling is controlled
by the negative portion of rh0 in W0 where W0 is almost independent of rp, this explains the insensitivity to rp
of the functional form of rh0. Finally, the magnitude of ðpcrÞmin for each of the cases in Fig. 1 matches the
scaling law in Eq. (11) closely.

In the dynamic case, the time shape of the forcing pulse is assumed trapezoidal with a duration of 50 ls,
and rise and fall times of 5 ls. Dynamic instability is fundamentally different from static buckling in the
following ways. Static buckling presumably happens instantaneously, and critical pressure pcr is determined
uniquely by the solution of an eigenvalue problem, yielding a buckling mode independent of geometry.
Dynamic instability depends on the evolution with time of asymmetric displacement induced by imper-
fections in loading and geometry which increase with time while the forcing pulse is acting. The deformed
shape is confined by the shear wave front which propagates at the instantaneous shear wave speed. Flexural
deformation w0 induces inplane stresses that rise concomitantly. As with static buckling, the negative
portion of rh0 reduces stiffness and a time is reached when the lowest eigenvalue vanishes to become
negative afterward. This marks the start of divergence. Other higher frequency modes then follow the same
path also becoming unstable while the forcing pulse is acting. To reach this level requires a minimum
pressure threshold and/or a maximum disk thickness which is the measure of stiffness provided material

Fig. 2. Variation of static pcr with n.
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properties are fixed. Unlike the static case where flexural deformation produces inplane stresses instanta-
neously, in the dynamic case, the process is modulated by radial wave propagation of the disk. This added
freedom suggests that the radial distribution of ðrr0; rh0Þ will differ substantially from the corresponding
static distribution in Fig. 1.

An axisymmetric load acting on an axisymmetric geometry cannot excite asymmetric modes. The only
possible process is by small asymmetries from loading and geometric imperfections which magnify in time
because of the divergence explained above. Loading imperfections result from asymmetry in spatial pres-
sure distribution or eccentricity. If eccentricity is small compared to disk radius, the generalized force from
loading asymmetry affects only modes with low n. This is because unðrÞ for nP 2 becomes negligibly small
near r ¼ 0. Since generalized force is the inner product hpjruni over the foot-print, it in turn will be cor-
respondingly small. On the other hand, generalized force from initial geometric imperfection is similar in
form to geometric stiffness which is the inner product hr0 � jijruni where r0 ¼ frr0; rh0gT

and ji is vector of
curvature from initial imperfection wi in Eq. (5). Since geometric imperfection usually spreads over the
whole disk, the resulting generalized force is finite for all n. In the analysis to follow, magnitude of im-
perfections is assumed to be ep ¼ 0:1 lb/in.2 and ew ¼ 0:0100. Both types are constant for all n to avoid any
bias for or against a specific n.

For n ¼ 5, Fig. 3 shows the evolution of the eigenvalues xmn of the first five radial modes m for cases 1, 3
and 5 in Table 1. For each case, the value of pmax is listed in Table 2. pmax produces sufficient negative rh0

after 25 ls from impact, to cause an unstable asymmetric flexural stress rhn to grow by two orders of
magnitude from the initial axisymmetric flexural stress rh0. For case 1 (Fig. 3(a)), xmn turns negative in
an ascending order of m and maintains its negative value even after the 50 ls pulse has elapsed. In case 3

Fig. 3. Evolution of xmn with time for cases 1, 3 and 5.
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(Fig. 3(b)), the thicker disk response stabilizes near 45 ls when the xmn lines rise back to positive values.
Case 5 (Fig. 3(c)) resembles case 1 since stiffening from a thicker disk is counteracted by rise in total load
from a wider rp.

Fig. 4(a–c) show snap-shots in time of instantaneous distribution along r of ðrr0; rh0Þ. At t ¼ 5 ls, the
shear wave front is at r ¼ 1 in. explaining the vanishing ðrr0; rh0Þ for r > 1 in. For t ¼ 15 ls, the front
reaches r ¼ 2 in. while w0 increases, inducing higher ðrr0; rh0Þ. At t ¼ 25 ls, the front reaches r ¼ rd and
reflects back to the center. In contrast to the static distributions in Fig. 1, both rr0 and rh0 in Fig. 4 reach
largest negative magnitudes at r stations closer to the center.

Table 2

pcr stat and pmx dyn in psi for cases 1–7

Case h (in.) rp (in.) pcr stat pmx dyn

1 0.1 0.2 5.82E4 1.00E6

2 0.2 0.2 9.20E5 5.00E6

3 0.3 0.2 4.59E6 1.50E7

4 0.1 0.5 9.55E3 2.50E5

5 0.2 0.5 1.51E5 1.00E6

6 0.3 0.5 7.53E5 3.00E6

7 0.4 0.5 2.42E6 6.00E6

Fig. 4. Snap-shots of ðrr0;rh0Þ along r for case 3 at t ¼ 5, 15 and 25 ls.
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The unstable growth of rhn is found by integrating Eqs. (22a) and (22b) numerically. For each n, the
integration is stopped at t ¼ 25 ls and the maximum value of rhn over the disk’s surface is termed rhn max. A
plot of rhn max versus n reveals a maximum at some ncr related to the critical asymmetric mode causing
failure of the material by 2ncr radial cracks and as many circumferential cracks as the dominant radial wave
number of the ncr mode. Fig. 5(a–c) plot rhn max versus n for cases 1, 2 and 3. For fixed rp, ncr rises with h. An
explanation is that for a thicker disk, lines of xmn versus n and fixed m are flatter than those of a thinner
disk, allowing higher n modes to be excited. Fig. 6(a–d) plot rhh max versus n for cases 4, 5, 6 and 7 (see Table
2). Comparing plots in Fig. 5 to those in Fig. 6 for the same h reveals that ncr rises with rp. One explanation
is that ðrr0; rh0Þ turns negative at larger r when rp rises and this in turn increases hr0 � jijruni at the higher n
to compensate for the vanishingly small un near r ¼ 0.

The effect of rise time of the forcing pulse trise is demonstrated by Fig. 7(a–c). Case 2 was recomputed for
trise ¼ 2:5, 5 and 10 ls using the same pmax for that case in Table 2. Although trise has no effect on ncr, a
shorter trise intensifies the instability by raising rhn max, while a longer trise has the reverse effect. Finally, if
pmax equals the static pcr listed in Table 2, no instability will occur at least during the duration of the pulse.
This suggests that higher pressure is needed for dynamic instability than for static buckling, i.e.
pmax dyn > pcr stat. One explanation is that a dynamic load has to overcome stiffness as well as inertia, while
the later is absent in the static case.

Fig. 5. Variation of rhn max with n for cases 1, 2, 3.
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3. Conclusion

Static buckling and dynamic instability of a thin disk were analyzed by a linearized perturbation pro-
cedure. Noteworthy results are listed below:

For static buckling:

1. pcr follows a scaling law proportional to Eh4=ðrdrpÞ2
.

2. The radial distribution ðrr0; rh0Þ induced by the prebuckling axisymmetric flexural deformation w0, and
the corresponding asymmetric buckling mode are insensitive to all parameters.

3. pcr drops sharply from n ¼ 2 to n ¼ 3, achieves a minimum at ncr ¼ 5, then rises smoothly for n > 5.
4. ncr is independent of h=rd and rp=rd because the functional form of the solution is independent of these

parameters.

For dynamic instability including effects of radial propagation:

1. Confined by the shear wave front, w0 induces ðrr0; rh0Þ whose radial distribution changes substantially
with time.

2. The negative portions of ðrr0; rh0Þ cause instability by changing the sign of the eigenvalues, creating neg-
ative geometric stiffness.

3. Asymmetric initial imperfections in loading and geometry diverge with time if pmax is sufficiently high.

Fig. 6. Variation of rhnmax with n for cases 4, 5, 6, 7.
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4. That asymmetric mode growing fastest and reaching the largest magnitude of rhn max over a finite time
interval from impact is the critical unstable mode for that n.

5. rhn max varies smoothly with n and reaches a maximum at some ncr.
6. Unlike static buckling, ncr increases with h and rp, but is insensitive to trise when trise < 2p=x1;n.
7. Reducing trise strengthens the instability yielding a higher rhn max for the same pmax.
8. The threshold of pmax causing dynamic instability during the time interval of the forcing pulse is substan-

tially higher than static pcr, because of inertia opposing motion, and the shift in largest negative magni-
tude of rh0 toward the center where a higher pressure is needed to cause instability.

Appendix A. Axisymmetric static response

The static axisymmetric Mindlin’s equations for a disk are

Dr2
1wr � jGh

ow
or

�
þ wr

�
¼ 0 ðA:1Þ

jGh r2
0w

�
þ 1

r
o

or
ðrwrÞ

�
¼ �p½HðrÞ � Hðr � rpÞ
 þ pb ðA:2Þ

where ðwr;wÞ are rotation and axial displacement, G is shear modulus, j is shear constant, p is uniform
pressure acting over 06 r6 rp, and pb is uniform pressure over 06 r6 rd, opposing p with magnitude

Fig. 7. Effect of trise on rhnmax for case 2.

2980 M. El-Raheb / International Journal of Solids and Structures 39 (2002) 2965–2986



pb ¼ pðrp=rdÞ2
to equilibrate the disk when the boundary is stress-free. Eliminating wr from (A.2) using

(A.1) yields

r4
0w ¼ 1

D
fp½HðrÞ � Hðr � rpÞ
 � pbg ðA:3Þ

To solve (A.3) analytically, divide the disk into two parts. The first is a solid disk in 06 r6 rp forced by
ðp � pbÞ, and the second is an annular disk rp 6 r6 rd forced by �pb. Integrating (A.3) then (A.2) in parts 1
and 2 produces

w1ðrÞ ¼ C1r2 þ C2 þ
ðp � pbÞ

64D
r4 ðA:4aÞ

wr1ðrÞ ¼ �2C1r �
ðp � pbÞ

2jGh
r � ðp � pbÞ

16D
r3 ðA:4bÞ

Qr1ðrÞ ¼ � ðp � pbÞ
2

r ðA:4cÞ

Mr1ðrÞ ¼ �D 2ð1



þ mÞC1 þ
ð1 þ mÞðp � pbÞ

2jGh
þ ð3 þ mÞðp � pbÞ

16D
r2

�
ðA:4dÞ

where Qr and Mr are shear and moment resultant.

w2ðrÞ ¼ C3r2 þ C4r2‘nr þ C5‘nr þ C6 �
pb

64D
r4 ðA:5aÞ

wr2ðrÞ ¼ �2C3r � C4rð2‘nr þ 1Þ þ C7

r
þ pbr

2jGh
þ pbr3

16D
ðA:5bÞ

Qr2ðrÞ ¼
jGh
r

ðC5 þ C7Þ þ
pbr
2

ðA:5cÞ

Mr2ðrÞ ¼ �D 2ð1



þ mÞC3 þ C4ð2ð1 þ mÞ‘nr þ 3 þ mÞ þ ð1 � mÞC7

r2
� ð1 þ mÞpb

2jGh
� ð3 þ mÞpbr2

16D

�
ðA:5dÞ

C7 can be expressed in terms of Cj, j ¼ 4, 5 by substituting (A.5a) and (A.5b) in (A.1) then equating co-
efficients of each primitive to zero

C7 ¼ � 2h2

3ð1 � mÞk C4



þ C5

�
ðA:6Þ

Coefficients Cj, j ¼ 1, 7 are determined by enforcing continuity of the state vector fQr;Mr;w;wrg
T

at r ¼ rp
and boundary conditions at r ¼ rd. For simple supports

Mr2ðrdÞ � w2ðrdÞ ¼ 0 ðA:7aÞ

And for stress free

Mr2ðrdÞ � Qr2ðrdÞ ¼ 0 ðA:7bÞ
This produces the simultaneous equations

MSC ¼ P ðA:8Þ
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For a solid disk forced by a uniform pressure

w0 ¼ C1r2 þ C2 þ pr4=64D ðA:9Þ
For simple supports w0ðrdÞ ¼ 0, MrðrdÞ ¼ 0

C1r2
d þ C2 ¼ � pr4

d

64D
; D ¼ Eh3

12ð1 � m2Þ ðA:10Þ

2ð1 þ mÞC1 ¼ �ð1 þ mÞp
2jGh

� ð3 þ mÞpr2
d

16D

) C1 ¼ � p
4jGh

� ð3 þ mÞpr2
d

32ð1 þ mÞD

C2 ¼
pr4

d

64D
5 þ m
1 þ m

� �
þ pr4

d

4jGh3

h
rd

� �2

Substituting (A.10) in (A.9) yields

w0ðrÞ ¼ � pr4
dð3 þ mÞ

32ð1 þ mÞD



þ pr2

d

4jGh

�
n2 þ pr4

d

64D
5 þ m
1 þ m

� �
þ pr2

d

4jGh
þ pr4

d

64D
n4

¼ pr4
d

64D
n4



� 2ð3 þ mÞ

ð1 þ mÞ n2 þ ð5 þ mÞ
1 þ m

�
þ pr4

d

4jGh3
ð1 � n2Þ h

rd

� �2
ðA:11Þ

where n ¼ r=rd. In this case, functional form of the solution as defined in Eq. (11) depends on ðh=rdÞ
through shear deformations and is of the order oðh=rdÞ2

.
In the case when w0 is approximated by J0ðk0rÞ

w0ðrÞ ¼
pr4

d

D
g
c4

01

J0ðc01nÞ; g ¼
R 1

0
J0ðc01nÞndnR 1

0
J 2

0 ðc01nÞndn
; J0ðc01Þ ¼ 0 ðA:12Þ

Note that functional form of (A.12) is independent of h=rd.
For the case when pðrÞ ¼ prm½HðrÞ � Hðr � rpÞ
, Eqs. (A.4a)–(A.4d) become

w1ðrÞ ¼ C1r2 þ C2 þ
p
D

rmþ4

ðm þ 4Þ2ðm þ 2Þ2

"
� frmþ2

ðm þ 2Þ2

#
; f ¼ h2

6ð1 � m2Þj ðA:13aÞ

wr1ðrÞ ¼ �2C1r �
p
D

rmþ3

ðm þ 4Þðm þ 2Þ2
ðA:13bÞ

Qr1ðrÞ ¼ � p
ðmþ 2Þ r

mþ1 ðA:13cÞ

Mr1ðrÞ ¼ �2Dð1 þ mÞC1 �
ðmþ 3 þ mÞp

ðm þ 4Þðm þ 2Þ2
rmþ2 ðA:13dÞ

Appendix B. Asymmetric eigenproblem

Mindlin’s plate equations may be written in vector form as

D
2
½ð1 � mÞr2W þ ð1 þ mÞ$U
 � jGhðW þrwÞ ¼ qh3

12

o2W
ot2

ðB:1Þ
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jGhðr2w þ UÞ þ p ¼ qh
o2w
ot2

ðB:2Þ

U ¼ $ � W; D ¼ Eh3

12ð1 � m2Þ
where W is the vector of rotations, w is transverse displacement, (q, m) are density and Poisson ratio, (E, G)
are Young’s and shear moduli, j is shear constant, h is thickness, t is time, p is applied pressure, r2 is the
Laplacian and r is the gradient operator. Taking the divergence of (B.1)

Dr2U � jGhðU þr2wÞ ¼ qh3

12

o2U
ot2

ðB:3Þ

Eliminating U from (B.2) and (B.3)

r2

�

� 1

c2
e

o2

ot2

�
r2

�
� 1

c2
s

o2

ot2

�
þ 12

c2
eh2

o2

ot2

�
w ¼ 1

D



� 1

jGh
r2

�
� 1

c2
e

o2

ot2

��
p ðB:4Þ

c2
e ¼

E
qð1 � m2Þ ; c2

s ¼
jG
q

Eliminating r2w from (B.2) and (B.3) yields

Dr2



� qh3

12

o2

ot2

�
U ¼ qh

o2w
ot2

� p ðB:5Þ

Taking the curl of (B.1)

D
2
ð1



� mÞr2 � jGh � qh3

12

o2

ot2

�
ð$ � WÞ ¼ 0 ðB:6Þ

from which it can be inferred that ð$ � WÞ is not a function of w while W may actually be expressed as

W ¼ r½gðwÞ
 þ $ � C ðB:7Þ
where C is a vector potential for W independent of w. Substituting (B.7) in (B.5) using the definition of U
yields

Dr2



� qh3

12

o2

ot2

�
r2g ¼ qh

o2w
ot2

� p ðB:8Þ

Substituting (B.7) in (B.6) using the identity

r�r� A ¼ rðr � AÞ � r2A ðB:9Þ
produces

D
2
ð1



� mÞr2 � jGh � q

h3

12

o2

ot2

�
r2C ¼ 0 ðB:10Þ

Defining s ¼ r2C, reduces (B.10) to

r2



� 12j

h2
� 2

ð1 � mÞc2
e

o2

ot2

�
s ¼ 0 ðB:11Þ

For a solid disk and periodic motions in time with frequency x, the homogeneous solution of (B.4) takes
the form
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wðr; h; tÞ ¼ wðrÞ cos nheixt ðB:12aÞ

wðrÞ ¼ C1Jnðk1rÞ þ C2Jnðk2rÞ ðB:12bÞ

k4 � 2b1k
2 þ b2 ¼ 0 ðB:12cÞ

b1 ¼
1

2

c2
e þ c2

s

c2
ec2

s

x2; b2 ¼
x2

c2
e

x2

c2
s

�
� 12

h2

�

where ðr; hÞ are radial and circumferential coordinates, n is circumferential wave number, i ¼
ffiffiffiffiffiffiffi
�1

p
. Since g

is a function of w, and from (B.8) linear with w, it can be expressed like (B.12a) and (B.12b) as

gjðrÞ ¼ CgjJnðkjrÞ; r2gj ¼ �k2
j gj; j ¼ 1; 2 ðB:13Þ

Substituting (B.13) in (B.8) yields

�


� k2

j þ
x2

c2
e

�
k2
j Cgj ¼ � 12x2

h2c2
e

Cj ðB:14Þ

then using (B.4), Eq. (B.14) simplifies to

Cgj ¼
1

k2
j

�
� k2

j �
x2

c2
s

�
Cj ðB:15Þ

Taking the gradient of (B.13)

rgj ¼
o

or
;

�
� n

r

�
CgjJnðkjrÞ ðB:16Þ

Furthermore, since s and W are orthogonal, and W is in the plane of the disk then s ¼ ð0; 0; szÞ and

sz ¼ CsJnðksrÞ ðB:17Þ
Substituting (B.17) in (B.11) produces the dispersion relation

k2
s ¼ 2x2

ð1 � mÞc2
e

� 12j
h2

ðB:18Þ

Eq. (B.18) exhibits a cut-off above

xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6jð1 � mÞ

p ce

h
¼

ffiffiffiffiffi
12

p
cs

h
ðB:19Þ

which is the same as that in (B.12c). Finally, using js in (B.18) and since C and s are parallel then
C ¼ ð0; 0;CzÞ, and

Cz ¼ CCJnðksrÞ ðB:20Þ
Taking the curl of (B.20)

$ � C ¼ n
r
;

�
� o

or

�
CCJnðksrÞ ðB:21Þ

Substituting (B.16) and (B.21) in (B.7) determines the solutions

wrðr; h; tÞ ¼ cos nheixt
X2

j¼1

CgjkjJ 0
nðkjrÞ

(
þ n

r
CCJnðksrÞ

)
ðB:22aÞ
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whðr; h; tÞ ¼ sin nheixt
X2

j¼1

(
� n

r
CgjJnðkjrÞ � ksCCJ 0

nðksrÞ
)

ðB:22bÞ

wðr; h; tÞ ¼ cos nheixt
X2

j¼1

CjJnðkjrÞ ðB:22cÞ

where Cgi is related to Ci by (B.15).
Moments and shear resultants at the boundary are expressed in terms of ðwr;wh;wÞ as

Mrr ¼ D
owr

or



þ m

wr

r

�
þ 1

r
owh

oh

��
ðB:23aÞ

Mrh ¼
Dð1 � mÞ

2

1

r
owr

oh



þ owh

or
� wh

r

�
ðB:23bÞ

Qr ¼ jGh
ow
or

�
þ wr

�
ðB:23cÞ

For a free edge

MrrðrdÞ � MrhðrdÞ � QrðrdÞ ¼ 0 ðB:24aÞ

and for a simply supported edge

MrrðrdÞ � whðrdÞ � wðrdÞ ¼ 0 ðB:24bÞ

Substituting (B.22a)–(B.22c) in (B.23a)–(B.23c) then in either (B.24a) or (B.24b) produces the implicit ei-
genvalue problem

BðrdÞC ¼ 0 ) det jBj ¼ 0 ðB:25aÞ

where B is a 3 � 3 matrix of the fundamental solutions in ðwr;wh;wÞ and their first derivatives, and

C ¼ fC1;C2;CCgT ðB:25bÞ

fwrn;whn;wng can be expanded in terms of the eigenset fxn; grn; ghn;ung.
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