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Abstract

A dynamic analysis is presented for circumferential buckling of a disk induced by transient axisymmetric flexural
deformation from a pulse of short duration. A perturbation solution is adopted in solving the coupled non-linear
stability equations, utilizing the asymmetric dynamic eigenfunctions of the disk as trial functions in the Galerkin
procedure. Static buckling is treated first to demonstrate the utility of the stability analysis and evaluate how critical
stress and circumferential wave number of the buckling mode depend on disk radius and thickness. In the dynamic case,
transient response is the evolution in time of an axisymmetric deformation shape bounded by the shear wave front.
Dynamic stability from induced inplane stresses of asymmetric perturbations is characterized by their divergence in
time. The dynamic buckling mode is that mode growing fastest over a fixed period of time after impact. © 2002
Published by Elsevier Science Ltd.
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1. Introduction

Observations of experiments on thin brittle disks and square plates struck centrally by a cylindrical
projectile show a common mode of failure: cracking along radial lines with equiangular spacing which
suggests a critical stress that varies periodically along the circumference with peaks along the radial cracks.
Since the applied pressure from impact is axisymmetric, purely linear analysis predicts an axisymmetric
response and fails to explain the asymmetry of the observed failure mode. The only phenomenon consistent
with this mode of failure is dynamic instability growing from initial asymmetric imperfections along the
perimeter of the disk or plate. The instability is caused by negative circumferential stress oy induced by large
flexural deformation.

Static buckling of a disk has been treated extensively in the literature. One of the earliest analyti-
cal treatments dates back to 1930, as quoted in Timoshenko and Woinowsky-Krieger’s textbook (1959).
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Over 160,000 references treat static buckling of rectangular plates by the finite element method. Only 60
references treat buckling of a disk and among these, only three include inertial effects adopting a semi-
analytical method. In these references, dynamics implies response from loading with periodic time de-
pendence at a single frequency. None of these references considers analysis of buckling in a transient wave
environment. From this list of references, there is space here to pick only a few representing various
methods of solution. Bolotin’s monogram on dynamic stability (Bolotin, 1956) presents a fundamental
treatise on dynamic buckling of elastic systems. Chen and Juang (1987) and Bhushan et al. (1996) adopt
finite elements to solve the non-linear and linearized stability equations. Tani and Yamaki (1981) treats
stability and the effect on eigenfrequency of inplane stresses by the finite difference method. Yamaki et al.
(1981), Laura et al. (1995), Shih et al. (1995), and Krizghevsky and Stavsky (1998) use the Galerkin method
to determine stability in the frequency domain. Nath et al. (1985) adopts the Chebyshev collocation method
to solve the static and free vibration stability equation. Turvey (1978), and Khadkhodayan et al. (1997)
apply the method of dynamic relaxation to the buckling analysis for statics and free vibrations. Kolegov
et al. (1991) studies experimentally how buckling deflection of disks changes with impulsive load for dif-
ferent diameters and thicknesses. This is the only reference reporting transient collapse.

In the analysis to be presented below, static buckling is treated by a linear perturbation solution of the
coupled non-linear equations. The static axisymmetric flexural deformation wy(r) from applied pressure p
acting over a concentric circular footprint is solved analytically adopting Mindlin’s equations for a disk.
The non-linear function in wy(r) and its derivatives forcing the inplane equilibrium equation yields the
induced inplane stresses ¢, and oy appearing in the stability equation governing the asymmetric displace-
ment w,(r, 0) where n is circumferential wave number. The asymmetric dynamic eigenfunctions of the disk
serve as trial functions in a Galerkin solution. Critical pressure p, corresponds to that n = n,, for which
buckling pressure p(n) achieves a minimum.

The deformation of a disk forced by a pulse of short duration is confined by the shear wave front with
instantaneous radius r,. During the application of the external load, as r, increases with time so does
amplitude of the instantaneous deformed shape. As with static buckling, dynamic displacement induces a
compressive oy that causes displacement to diverge. The linear unsteady Mindlin’s equations of the disk
forced by the pressure pulse are solved by modal analysis. The resulting axisymmetric displacement wy(r, t)
is utilized to compute 0,9 and agy. The time when the lowest eigenvalue vanishes marks the threshold of
stability for some n. That n yielding the largest unstable growth of gy, for some fixed elapsed time from
impact determines the most dynamically unstable mode. Parameters important in static buckling, such as
disk radius rq, aspect ratio rq4/h where / is thickness, and modulus E, are now replaced by instantaneous
radius of the wave front r,, instantaneous aspect ratio r/k, and phase velocity c,. Unlike the static case
where critical gy, occurs near the edge, in the dynamic case critical a4, may occur at ry, < rq. In turn, wy(r, ¢)
must reach larger values than in statics to attain the threshold of stability.

Sections 1.1 and 1.2 formulate the pre-buckling axisymmetric state and the asymmetric stability equation
for static buckling and dynamic instability. Section 2 discusses the sensitivity of p. to 4 and & for a static
problem, and extends the results to wave propagation explaining how it differs from the simpler static
problem.

1.1. Static analysis

When a thin disk is loaded axisymmetrically, lateral displacement w, from flexure induces inplane
stresses ag,9 and ag. If the disk boundary is stress free in its plane, gy changes from tensile near the disk
center to compressive near its boundary (see Timoshenko and Woinowsky-Krieger, 1959). Except for a disk
fully clamped along the perimeter, this reversal of gy along r occurs for both free and simply supported
boundaries. The compressive oy may buckle the disk along the perimeter.
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Consider the inplane static equilibrium equation for axisymmetric deformation
06,y 0, — 0
0 n 0 0 _ 0 (1)

or r

For plane strain, the constitutive law simplifies to
E , oL, 2 v
00 =12 <”0 ) (w5) Jr,,) 22)

E v 2 U
o == (3067 + ) (20)
where u, is radial displacement and ( )’ stands for partial derivative with respect to variable r. The term

(1/ 2)(w6)2 is the non-linear radial strain coupling transverse to inplane variables. Substituting (2a) and (2b)
in (1) yields

1 u I1—vw

V%uozug+ru6+rg<w6wg+ O) (3)
In-plane stresses (0,9, 0g0) multiplied by curvature produce non-linear shear terms modifying the w equi-
librium equation to

. . 1, 1w
DV*'w — ho,ow" — hoyg ;W +l”__ :P[H(”)_H(r_rp)] (4)

i (@ 10 1@ ? L b
\or ror r2o0*)’ C12(1 —?)

where H () is the Heaviside function and 6 is the circumferential angle. The coupled non-linear Egs. (3) and
(4) in uy and w govern the stability of the disk.

An axisymmetric load applied to an axisymmetric geometry cannot induce circumferentially asymmetric
modes. Asymmetry may result either from loading or geometric imperfections p; and w;. Magnification of
these asymmetric perturbations with applied load is the basis of bifurcation from an almost axisymmetric
response to an asymmetric instability. Let p(r, 0,¢) be the total applied forcing pressure made of an axi-
symmetric part py of order unity and an asymmetric part p; of much smaller magnitude. Also let w; be the
geometric imperfection. For simplicity, consider a Fourier expansion of p; and w; in terms of circumfer-
ential harmonics

p(r,0,0) = (po + pi(0)) /(1)

N N
pi(0) = ¢, Z cos(nf), wi(r,0) = swrZ cos(nf) ©)
n=2 n=2
where f,(¢) is time dependence of p and equals unity for a static problem, and ¢, and ¢,, are magnitudes of
loading and geometric imperfections so that ¢, < py, &, = o(wy). Since an n = 0 imperfection does not
induce asymmetry, and since an » = 1 imperfection corresponds to a rigid body translation or rotation,
only harmonics with » > 2 are included in the expansions of Eq. (5). In practice, the geometric imperfection
in a disk is larger at the perimeter than it is near the center. Also, continuity of w; at » = 0 for n > 0 requires
it to vanish there. The simplest radial function meeting these two requirements is linear with r as described
in Eq. (5). Both ¢, and ¢,, are assumed to have the same magnitude for all circumferential harmonics. This
choice which assumes equal weight of all loading imperfections will show if the unstable mode has a
preferential .
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Numerical solution of the set (3) and (4) determines p as a function of w. An instability occurs when the
slope of the line p versus w becomes negative, indicating that strain energy ceases to be positive definite.
Another way to determine critical pressure p, is to solve the non-linear set (3) and (4) adopting a linearized
perturbation method. Express (u, w) as the sum of an axisymmetric term of O(1) and an asymmetric term of
order o(e)

u(r,0) = uo(r) + u,(r) sinn0
w(r,0) = wo(r) + w,(r) cos nf (6)

where 7 is an integer circumferential wave number. Substituting (6) in (3) and (4) and equating terms of the
same order of smallness in ¢ yields

DViwo = plH(r) ~ H(r =1,)] (7a)
2 ;o 1—v (W6)2
Viug = — | wowy + T = —Wo(wo(r)) -
DV:Wn - G(G(), Wn) = Sp + SWG(G(), r)
/ 7c
r r
=120 wi=wvw

"ot ror
where the right hand side of (7c) is a known forcing term. The functional G(a¢,w,) is geometric stiffness
from asymmetric displacement, and G(ay,r) is geometric stiffness from initial imperfection. These account
for shear forces produced by initial axisymmetric stresses acting on curvature from asymmetric displace-
ment and geometric imperfection. Eq. (7a) governs the pre-buckling static axisymmetric displacement wy(r)
from the applied pressure p. Once wy is determined, the functional W, becomes a known function of r.
Substituting W, (wo(r)) in (7b) and expressing V7 as

Vi =5 (1 5 w) (7d)

r or

then integrating (7a) yields uy(r)

uo(r):——/ /WO )dedn + Crr+ Co/r (8)

where C|, C, are constants of integration. C, drops out because the solution is bounded at » = 0. Substi-
tuting (8) into (2a) and (2b) produces

oulr) = 2 {852 [ [P miyazan— [Tm@az+ 307 + 0+ ve ) %)

owi) = 2 52 [0 [P macan— [Tmi@acSoner s aena}  ow)

Evaluating (9a) at » = rq and equating to zero for a stress-free boundary determines C,

(140G = 1‘V/ o [ m@acan+ [ m©ds -3 00 (9)
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Substituting (9¢) in (9b) yields the expression for g (r)

ow(r) =1_Ev2{—(1 —) /Orn/onWo(é)dédn—V/Or%(f)d@r%(%("))z

72
(1—-v)
;

[ [ macan+ [“meac-Joqe0r] (9d)

Since d*wy/dr* is proportional to p, and (6,0, 09) are proportional to (d*w,/dr*)’, then expressing
69 = 6op; brings py explicitly in Eq. (7¢)

DViw, — pG(60, W) = &, + £,G (69, 7) (10a)
Approximating w, by trial functions ¢,;

wa(r) = 3 Gy (1) (100)

then substituting (10b) in (10a), multiplying both sides by r¢,, () and integrating over the domain produces
the matrix equation

My, — Mb,Ip3]C, = R,¢, + Re, (10c)

"p

r4
Mlnjk = ‘/0 Dvg((pnj)wnkrdr7 Rnpk = /0 ank(’ﬁ)rdr

rqd rq
Mank = / G(éov (pnj)q)nkrdr7 Rn”’k = / G(é‘o,r)rdr
0

0

= Cn = [Mln - MZnIpé]_l (Rnpsp + Rnwsw)

The weight r¢,,(r) is used instead of ¢,,(r) alone consistent with cylindrical coordinates and the fact that if
o, (r) were a set of orthogonal eigenfunctions then orthogonality may be utilized to simplify calculations.
In (10c) C, diverges at characteristic values of p, for which

det ‘Mln — Mznlp(z)| =0 (IOd)

yielding the critical pressure p., as the smallest eigenvalue of (10d).

The concept of functional form is presented below. The solution to a system of linear ordinary differ-
ential equations can be expressed as the sum of primitives which are functions of the independent variables
and parameters, multiplied by coefficients that depend only on the parameters. If the primitives are inde-
pendent of the parameters and all coefficients share the same dependence on these parameters, then the
functional form of the solution is independent of the parameters. This means that the normalized shape of
the solution is independent of the parameters while its magnitude may vary by a constant multiplicative
factor. This definition may be cast in mathematical form as

(0, xm) = C(ou) ZﬁJ-Pj(kmxm) (11)

where S(o;,x,,) is the solution function, o; are the parameters, x,, are the independent variables, C(o;) is a
function of parameters only, f; are constants, and P;(k,x,) are primitives of the differential operator and
are functions of constants k,, and x,,. The functional form of the solution given by Eq. (11) is independent of
O
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Consider the following two forms for wy(r) in (7a) and (7b):

1. the approximation wy(r) = Jy(kor) where Jj (kora) = 0 is a non-natural boundary condition approximat-
ing simple supports,
2. the static axisymmetric displacement wy(r) satisfying (7a) (see Appendix A),

where J,,(k,r), m = 0, 1 is the Bessel function and £, is radial wave number. Similarly, consider the fol-
lowing two forms for w,(r, ) in (7c):

1. the approximation w,(r, 0) = cos(n0)J,(k,r) where J” (k,rq) = 0 approximates the same boundary condi-
tion as that for wy(r),
2. the asymmetric eigenfunctions of the homogeneous dynamic Mindlin’s equations (see Appendix B).

Substituting the one-term approximations above in Eqgs. (7a)—(7c) yields

Jo7 Jo(kor)rdr
= Do . Jo(k 12¢
wolr) =1 Dk Ong(kor)rdr o(kor) (12a)

Dk} [o¢ X (kyr)rdr

ot = 12b

P o &g(r)J,(kyr)rdr (120)
2 y1 kn ! 7’12

g(r) = hank,J, (k,r) + hao | —J, (kur) — = Ju (k) (12¢)
r r

where J/ (k,r) is derivative with respect to the argument (k,»). Applying dimensional analysis to Eqs. (12a)—
(12¢) reveals that

Eh*

2.2
I”dl”p

Per X (12d)
Clearly, the explicit dependence on rq/h and r,/rq of wy in (12a), uy in (7b) and (0,9, 0go) in (9a) and (9d),
renders the functional form of (g,9, gg) independent of rq/h and r,/rqy while magnitude is within a mul-
tiplicative scaling factor ay:

E I
(1=%) (Dkira)*
Since n of the critical mode depends primarily on the functional form of (0,9, 6g), it also is independent of
ra/h and r,/rq. Consequently, the one-term approximation predicts that n of the buckling mode is inde-

pendent of rq/h and r,/rq.
Express w,(r, 0) in terms of the dynamic eigenfunctions of the disk (See Appendix B)

(12e)

gy =

w,(r,0) = cosn()Zdj(pW-(r) (13)

Substituting (13) into (7¢), then eliminating the r dependence by multiplying (7c) by r¢,,(r) and integrating
from zero to ry yields

M,d = R, (14a)

Mnjk = Fnj - ank (14b)
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rd
F;'Ijk = D/ v:‘x(q)nj)(pnkrdr
0

(14c¢)
" " 1 ! n2
Gk = h |00l 00| ~ Py 3 Py | | Puerdr
rd W/
Ry = h/ (O'rowg + 000_0>§0nk”d’” (14d)
0 r
From (B.22¢), ¢,;(r) in (14¢c) and (14d) takes the form
2
@,(r) =D Copdulknr)  (see (B.22¢))
=1
2
= Vi, (r) = Cuki (k) (14e)
=1
The critical pressure is reached when pg factoring g,y and oy in (14d) is the smallest eigenvalue of
det/M,| =0 (14f)

1.2. Dynamic analysis

In the dynamic case, wy(r,¢) is determined adopting a modal solution to the axisymmetric Mindlin’s
equation (see El-Raheb and Wagner (1987))

w(r.) = 3 a0 (1) (150)
at) = _wN—z/vjo /Otf}](r) sin (1 — 7) de (15b)

where {w;, ¢y;} is the eigenset, f,(¢) is defined in Eq. (5), and

Tp rd h2
Ny = po / @o;(r)rdr, Ny = / @3, (r) + 5= 5,(r) | rdr
0 0 12Fd

At every time step £, wy(r,t), determined from (15a) and (15b), forms the instantaneous functional
VVO[WO(r? t)]
The dynamic counterpart of (7b) is

1 azuo E

Viug — = = = —Wo(r,1), ¢ =/ 16
140 cg o2 0(1”, )7 Ce p(l — V2) ( )
Expressing uy(r, ) in terms of its eigenset {&;,Ji(y;7)}
i
w(r,0) =D ¢(Oh(yr), 7= (17a)

J

The stress-free boundary condition a,9(r4) = 0 imposes the dispersion relation

(Vj”d)‘]ll('))j”d)‘i‘v‘]l(yj”d) =0 (17b)
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which determines the eigenvalues @;. Substituting (17a) in (16) and exploiting orthogonality of J (y;7) yields

. _ Nu'<t)
&+ ane; = Njoj (18)

_ d o 1 rd
Nuj(t):/o Wo(r,t)Jl(yjr)rdr, NOj:E/O le(yjr)rdr

Eq. (18) admits a solution

o(t) = ——= /Osin@j(t—f)mj(f)dr (19)

@;No;

which determines u(r,¢) from (17a) and subsequently o,9 and oy from (2a) and (2b).
The procedure for determining the threshold of dynamic stability is now outlined. Start with the dy-
namic counterpart of (7c) (see Eq. (B.4))

1o 1o 12 &
P(i- gz ) (V- gam) g g |~ Gloom) = b0 +ulonr) =

From Eq. (5), the asymmetric loading imperfection ¢, follows the same functional dependence on ¢ as py.
Assume the eigenset {¢,;,1,,;,1,;} derived in Appendix B as trial functions to solve w, in Eq. (20)

wi(r,t) = Zdn/’(t)@nj(r) (21)

Substituting (21) in (20), then eliminating the r dependence by exploiting orthogonality of the eigenset
yields

N,(d, + lo2d,) — H,(6)d, = R,,e,/,(t) + R.é, (22a)

where () is derivative with respect to time, w, are the eigenvalues of the axisymmetric problem in Egs.
(15a) and (15b) and

rq h2
Ny = phd / [(pij + 13 1 + '75”,-)} rdr (22b)
0

4 p rd
Hnj (t) = /0 G(O-Oa Qonj)(pnkrdra Rnpk = /0 ankI”d}", Ry = /0 G(ao,r)gonkrdr

where 6 is the Kronecker delta. Combining coefficients of d, in (22a) yields

d, + [To2 — N;'H,(0)]d, = N, '[R,,6,/, () + Ryt (23)

n

H,(¢) is a time-dependent geometric stiffness matrix. The coupled Eq. (23) describe the evolution of the
asymmetric mode with » circumferential waves. For some fixed 7 = ¢, Eq. (23) become unstable when one
or more components of the instantaneous eigenvalue ®,(#.) vanish,

(i)nk(tcr) = 07 k= kcr (2421)
where k is radial wave number. ®,(¢) diagonalizes (23) and satisfies the time-dependent eigenvalue problem
162(1) — 10> N, 'H, ()] = 0 (24b)

Condition (24a) is the onset of dynamic instability. Since (0,9, gg) in H, (¢) are time-dependent and rise with
wo(¢), more than one mode will become unstable while the forcing function acts. This means that for each
(n, k) dyad, a ¢, is reached when (24a) is satisfied. The growth of the unstable modes with time is according
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to the solution of the coupled Eq. (23) for each n. That mode growing fastest corresponds to the dominant
asymmetric dynamic buckling mode with n., circumferential waves.

2. Results

Results are presented in two parts. The first part discusses static buckling while the second part discusses
dynamic divergence from impulsive loading. In all numerical simulations, the disk has a radius 4 = 3 in.
and thickness # = 0.1, 0.2 or 0.3 in. The disk is forced by a uniform concentric pressure acting over a circle
of radius , = 0.2 or 0.5 in. The (h,r,) dyad for each of the six cases is listed in Table 1.

For flexural motions of the disk, the perimeter is simply supported, i.e. M,,(rq) = ¥y(rqa) = w(rq) = 0 (see
Eq. (B.24b)). For motions in the plane of the disk, the perimeter is stress free, i.e. g,0(ra) = 0. The material
properties of the disk are

E=45x10°1b/in?, p=3x10"*1Ibs’/in, v=025 (25)

The prebuckling static axisymmetric flexural response is computed by the exact solution derived in Ap-
pendix A. Displacement and its derivatives are then used to compute #;(r) in Egs. (9a) and (9b) yielding the
induced stresses in the plane of the disk. For py = 1, the distribution along r of (a,9, 0g9) for cases 1, 2, 3 and
5 in Table 1 are shown in Fig. 1(a—d). Note that for all cases a4y turns negative near »/rq = 0.43, and that
the functional form of (a9, 0g0)/0max is as predicted by the simpler one term solution in Egs. (12a)-(12e),
independent of / and r,.

The transition of gy from positive near disk center to negative near the perimeter can be explained in
two ways. The first relies on the mathematical form of the constituents in Eq. (9d) rewritten below for
convenience

on) =2 { =L [0 [P wiacan—v [ miaz+ 3 0

S0 eazans [ W()@)dc—z(wg(rd)f} (see (9))

rq

Since (&) is positive definite as evidenced from Eq. (7b), it is clear that in Eq. (9d) the groups formed by
terms (1,4) and (3,6) are negative definite and the group formed by terms (2,5) is positive definite. At » = 0,
the first three terms in (9d) vanish because the upper limit of the integrals is zero, and wj(0) = 0 from
axisymmetry. Since

(l—v/ /Wo dédn< /Wo )d¢ and /Wo )d< > = (Wf)(’”d»z

’”d

Table 1
h and r, for cases 1-6
Case h (in.) ry (in.)
1 0.1 0.2
2 0.2 0.2
3 0.3 0.2
4 0.1 0.5
5 0.2 0.5
6 0.3 0.5
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Fig. 1. Radial distribution of static inplane (v,9, 6p)-

then oy (0) satisfies the inequality

and is positive definite. Based on the same approximations above, ag(rq) reduces to

ow(ra) < (1v2){ 1_"/ Mo(c d5+1—"/ (e ae — 1 )(6(rd))2}

<~ 3715 ()

which is negative definite.

The other way to explain the transition is from physical grounds. Consider an unconstrained thin disk
resting on a frictionless ring near the disk boundary. A concentrated force applied at the center of the disk
produces axial deformation from flexure and radial deformation towards the center to compensate for an
almost constant intrinsic length of the disk [; (1 + (w})?)"/* dr. This means that the radial station on the disk
at the supporting ring slides inward. The difference in length of perimeters at the support between un-
deformed and deformed shapes accounts for the compressive gg.

For each n, expanding w, according to Egs. (12a)—(12e) including the first five radial wave numbers
yields the eigenmatrix in Eqs. (14a)—(14d). Its solution determines p.(n). Fig. 2(a—d) plots p., versus n for
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Fig. 2. Variation of static p.; with n.

cases 1, 2, 3 and 5. Note that all cases share the following characteristics independent of / and r,; p., falls
steeply between n = 2 and 3, reaches a minimum at n» = 5 then rises slowly for n > 5. In fact this result
agrees with that in Section 1.1 using the one-term approximation for w,. This insensitivity to / and r, of e,
follows that of (0,9, G0)/0max depicted in Fig. 1(a—d). This suggests that (o,9, Gg0)/0max control the shape of
the buckling mode. To explain this behavior, refer to Eq. (7b) governing inplane motion of the disk. The
functional form of u, depends only on W, (wy, wj, w,), while the functional forms of wy, wj, w; are inde-
pendent of / (see Egs. (A.4a) and (A.5a)) and depend weakly on r, for r, < rg4. Since buckling is controlled
by the negative portion of ggy in W, where W, is almost independent of r,, this explains the insensitivity to r,
of the functional form of gy. Finally, the magnitude of (p.),,, for each of the cases in Fig. 1 matches the
scaling law in Eq. (11) closely.

In the dynamic case, the time shape of the forcing pulse is assumed trapezoidal with a duration of 50 s,
and rise and fall times of 5 ps. Dynamic instability is fundamentally different from static buckling in the
following ways. Static buckling presumably happens instantaneously, and critical pressure p., is determined
uniquely by the solution of an eigenvalue problem, yielding a buckling mode independent of geometry.
Dynamic instability depends on the evolution with time of asymmetric displacement induced by imper-
fections in loading and geometry which increase with time while the forcing pulse is acting. The deformed
shape is confined by the shear wave front which propagates at the instantaneous shear wave speed. Flexural
deformation w, induces inplane stresses that rise concomitantly. As with static buckling, the negative
portion of gy reduces stiffness and a time is reached when the lowest eigenvalue vanishes to become
negative afterward. This marks the start of divergence. Other higher frequency modes then follow the same
path also becoming unstable while the forcing pulse is acting. To reach this level requires a minimum
pressure threshold and/or a maximum disk thickness which is the measure of stiffness provided material
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properties are fixed. Unlike the static case where flexural deformation produces inplane stresses instanta-
neously, in the dynamic case, the process is modulated by radial wave propagation of the disk. This added
freedom suggests that the radial distribution of (a,9, 090) Will differ substantially from the corresponding
static distribution in Fig. 1.

An axisymmetric load acting on an axisymmetric geometry cannot excite asymmetric modes. The only
possible process is by small asymmetries from loading and geometric imperfections which magnify in time
because of the divergence explained above. Loading imperfections result from asymmetry in spatial pres-
sure distribution or eccentricity. If eccentricity is small compared to disk radius, the generalized force from
loading asymmetry affects only modes with low n. This is because ¢, (r) for n = 2 becomes negligibly small
near r = 0. Since generalized force is the inner product (p|r¢,) over the foot-print, it in turn will be cor-
respondingly small. On the other hand, generalized force from initial geometric imperfection is similar in
form to geometric stiffness which is the inner product (e, - k,|r¢,) where 6y = {6, G@()}T and k, is vector of
curvature from initial imperfection w; in Eq. (5). Since geometric imperfection usually spreads over the
whole disk, the resulting generalized force is finite for all n. In the analysis to follow, magnitude of im-
perfections is assumed to be ¢, = 0.1 Ib/in.? and ¢, = 0.01”. Both types are constant for all n to avoid any
bias for or against a specific n.

For n = 5, Fig. 3 shows the evolution of the eigenvalues w,,, of the first five radial modes m for cases 1, 3
and 5 in Table 1. For each case, the value of py.y is listed in Table 2. pn., produces sufficient negative gy
after 25 ps from impact, to cause an unstable asymmetric flexural stress oy, to grow by two orders of
magnitude from the initial axisymmetric flexural stress ggy. For case 1 (Fig. 3(a)), w,, turns negative in
an ascending order of m and maintains its negative value even after the 50 us pulse has elapsed. In case 3

history : o, r,= 3.00 h= 010 n= 5 r, =02 history : , r,= 3.00 h= 0.30 n=5 r =02
1.00E+05 = o . I 6.00E+05 o , —
5.00E404 | T T 5.00E+05 |- g
- - RN 4.00E405 | /A
0.00 S N S /
e el S 3.00E+05 |- ;A
_ el el /
5.00E+04 |- T 2.00E+05 L /l/ -
~1.00E+05 | ] 1.00E+05 E ~ 7l
g h ¢ i
£ —1.50£+05 |- | & 000 / ’1
™~ T ~1.00E+05 |-
~2.00€+05 | _
—2.00E405 |-
~2.50E+05 | (a) 1 —3.00E+05 |
~3.00E+05 . . . . —4.00E+05 , , . L
0.00 10.00 20.00 30.00 40.00 50.00 0.00 70.00 20.00 30.00 40.00 50.00
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history : w,, T,= 3.00 h=020 n=5 1, =05
2.00E+05 . ; . :
1.00E+05 [ -
0.00
—1.00E+05 |-
13
3
S _2.00+405 L
—3.00E405 |-
(©)
—4.00E+05 , L ) .
0.00 70.00 20.00 30.00 20.00 50.00

t (us)

Fig. 3. Evolution of w,,, with time for cases 1, 3 and 5.
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Table 2
Derstat ANd Py 10 psi for cases 1-7
Case h (ln) p (ln) DPerstat Pmxdyn
1 0.1 0.2 5.82E4 1.00E6
2 0.2 0.2 9.20E5 5.00E6
3 0.3 0.2 4.59E6 1.50E7
4 0.1 0.5 9.55E3 2.50E5
5 0.2 0.5 1.51ES 1.00E6
6 0.3 0.5 7.53E5 3.00E6
7 0.4 0.5 2.42E6 6.00E6

(Fig. 3(b)), the thicker disk response stabilizes near 45 us when the w,,, lines rise back to positive values.
Case 5 (Fig. 3(c)) resembles case 1 since stiffening from a thicker disk is counteracted by rise in total load
from a wider 7,.

Fig. 4(a—) show snap-shots in time of instantaneous distribution along r of (6,9, 00). At =5 ps, the
shear wave front is at » = 1 in. explaining the vanishing (g,9, 099) for » > 1 in. For ¢t = 15 ps, the front
reaches » = 2 in. while wy increases, inducing higher (0, 090). At ¢t = 25 ps, the front reaches r = ry and
reflects back to the center. In contrast to the static distributions in Fig. 1, both ¢,y and oy in Fig. 4 reach
largest negative magnitudes at r stations closer to the center.

1.50E+07
1.00E+07
5.00E+06

0.00
8
5
- —5.00E+06
y

©

—1.00E+07
0.0

6.00E+07

3.00

4.00E+07
3.00E407
2.00E+07
1.00E+07
0.00
& -1.006+07
p —2.00E+07
=)

—3.00E+07

0.00 0.50

inpl. 0,

,0gg - t= 15.0 us

® A

3.00

5.00E+07
4.00E+07
3.00E+07
2.00E+07
1.00E+07

0.00

(€)1

<

)
. —1.00E+07

£ —2.00e+07

—3.00E+07
0.0

Fig. 4. Snap-shots of (6,9,0¢) along r for case 3 at 7 =5, 15 and 25 ps.
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The unstable growth of gy, is found by integrating Eqgs. (22a) and (22b) numerically. For each n, the
integration is stopped at ¢ = 25 ps and the maximum value of g, over the disk’s surface is termed o, max- A
plot of gy, max versus n reveals a maximum at some 7. related to the critical asymmetric mode causing
failure of the material by 2n,, radial cracks and as many circumferential cracks as the dominant radial wave
number of the n. mode. Fig. 5(a—c) plot 6, max versus n for cases 1, 2 and 3. For fixed 7, g rises with 4. An
explanation is that for a thicker disk, lines of w,, versus n and fixed m are flatter than those of a thinner
disk, allowing higher n» modes to be excited. Fig. 6(a—d) plot oggmax versus n for cases 4, 5, 6 and 7 (see Table
2). Comparing plots in Fig. 5 to those in Fig. 6 for the same / reveals that n,, rises with ,. One explanation
is that (g,9, gg0) turns negative at larger » when r, rises and this in turn increases (6, - k,|r¢,) at the higher n
to compensate for the vanishingly small ¢, near r = 0.

The effect of rise time of the forcing pulse 7 is demonstrated by Fig. 7(a—c). Case 2 was recomputed for
tise = 2.5, 5 and 10 pus using the same pn,, for that case in Table 2. Although #; has no effect on n, a
shorter 7 intensifies the instability by raising oy,max, While a longer ¢, has the reverse effect. Finally, if
Pmax €quals the static p,, listed in Table 2, no instability will occur at least during the duration of the pulse.
This suggests that higher pressure is needed for dynamic instability than for static buckling, i.e.
Dmax dyn > Perstat- One explanation is that a dynamic load has to overcome stiffness as well as inertia, while
the later is absent in the static case.

unstable 0gy : 7,= 3.00 T,= 0.20 h= 0.10 unstable agy : T,= 3.00 T,= 0.20 h= 0.20
2.006408 — - . . T 1.50E+08 . . :

(a) (b)
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Fig. 5. Variation of oy, m.x With n for cases 1, 2, 3.
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Fig. 6. Variation of y,m.x With n for cases 4, 5, 6, 7.

3. Conclusion

Static buckling and dynamic instability of a thin disk were analyzed by a linearized perturbation pro-
cedure. Noteworthy results are listed below:
For static buckling:

1. p follows a scaling law proportional to Eh*/ (rdr,,)z.
2. The radial distribution (g,9, 6g9) induced by the prebuckling axisymmetric flexural deformation wy, and
the corresponding asymmetric buckling mode are insensitive to all parameters.
. per drops sharply from n = 2 to n = 3, achieves a minimum at n., = 5, then rises smoothly for n > 5.
4. n is independent of /1/ry and r,/ry because the functional form of the solution is independent of these
parameters.

[95)

For dynamic instability including effects of radial propagation:

1. Confined by the shear wave front, wy induces (a,9, gg0) Whose radial distribution changes substantially
with time.

2. The negative portions of (6,9, 0¢9) cause instability by changing the sign of the eigenvalues, creating neg-
ative geometric stiffness.

3. Asymmetric initial imperfections in loading and geometry diverge with time if p,,, is sufficiently high.
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Fig. 7. Effect of fse 0N Ggymax fOr case 2.

. That asymmetric mode growing fastest and reaching the largest magnitude of ¢y, . Over a finite time

interval from impact is the critical unstable mode for that n.

. Ogamax varies smoothly with n» and reaches a maximum at some 7.

. Unlike static buckling, n,, increases with /1 and r,, but is insensitive to #ie When tise < 27/ wy .

. Reducing ¢, strengthens the instability yielding a higher ¢y, . for the same py ..

. The threshold of py.x causing dynamic instability during the time interval of the forcing pulse is substan-

tially higher than static p.., because of inertia opposing motion, and the shift in largest negative magni-
tude of oy toward the center where a higher pressure is needed to cause instability.

Appendix A. Axisymmetric static response

The static axisymmetric Mindlin’s equations for a disk are

DV, — KGh(aal:-i- w,) =0 (A1)

kGh (ng —|—% g(”‘/#)) =—plH(r)—H@r—r,)] +po (A.2)

where (,,w) are rotation and axial displacement, G is shear modulus, x is shear constant, p is uniform
pressure acting over 0 <r<r,, and py is uniform pressure over 0 <r<ry, opposing p with magnitude
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Do = p(ry /rd)2 to equilibrate the disk when the boundary is stress-free. Eliminating , from (A.2) using
(A.1) yields

Viw = L {plH() ~ H(— 1)) — ) (A3)

To solve (A.3) analytically, divide the disk into two parts. The first is a solid disk in 0 <r <, forced by
(p — pv), and the second is an annular disk r, <7 < rq forced by —py. Integrating (A.3) then (A.2) in parts 1
and 2 produces

wi(r) = C1V2+Cz+(p6;£b)r4 (Ada)
_ P=p) (P—po) 5

V. (r) = =2Cr — won " 1ep " (A.4D)

0(r) = f@r (Adc)

Ma(r) = —D|2(1 +v)¢; + LF ;i(gh_p") MiChs Vl)éf)_pb) 2 (A4d)

where O, and M, are shear and moment resultant.

wy(r) = Csr? + Cyr*bnr + Cstnr + Cg — Lo s (A.5a)
64D
Ualr) = —2Csr — Car(2tnr + 1) + S DL 27 (A.5b)
2= Tl T e r " 2kGh ' 16D '
kGh r
0n(r) === (Cs+ 0 + 5 (A.5c)
_ (1=vC (d+vp  B+v)pr
M, (r) = =D [2(1 +v)C+ Cy2(1 +v)lnr+34+v) + R e T (A.5d)

C; can be expressed in terms of C;, j =4, 5 by substituting (A.5a) and (A.5b) in (A.1) then equating co-
efficients of each primitive to zero

2hn?

Cr=— {M_v)ka‘ + C5} (A.6)

Coefficients C;, j = 1, 7 are determined by enforcing continuity of the state vector {Q,, M,,w, lk,}T atr=r,
and boundary conditions at » = rq. For simple supports

Mos(rg) =wa(rg) =0 (A.7a)
And for stress free

My(ra) = OQn(ra) =0 (A.7b)
This produces the simultaneous equations

MsC =P (A.8)
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For a solid disk forced by a uniform pressure

Wy :Cl}"2+C2 +pl"4/64D (A9)
For simple supports wy(rq) = 0, M,(rq) =0
4 3
) __ Py __Er
CritG=—gp P= 12(1 —2) (410
(I+v)p (3+v)pr3
2(1 =— -
(I+v)C 2KGh 16D
NP (34 v)prj

" 4kGh  32(1+v)D

2
o =P (3Evy, pa (h
64D\ 1+ v 4xGh3 \ 14

Substituting (A.10) in (A.9) yields

wolr) = proB3+v) | prg §2+ﬁ S5+v\ | P +ﬁé4
32(1+v)D ' 4xGh 64D\ 1+v) " 4xGh ' 64D

o [a 234y, (5+) pr NS
—m[f DR 1+v]+4xchz“‘“<a>

(A.11)

where & =r/ryq. In this case, functional form of the solution as defined in Eq. (11) depends on (A/ry)
through shear deformations and is of the order o(h/rg)’.
In the case when wy is approximated by Jy(kor)

n = fol Jo(y01€)édE
Jo R m&)ede’

Note that functional form of (A.12) is independent of &/r4.
For the case when p(r) = pr"[H(r) — H(r — r,)|, Eqgs. (A.4a)—(A.4d) become

_pan
D “/31

Jo(yo1) =0 (A.12)

W()(I") JO(VO]&)J

p rm+4 C’,,m+2 h2

wi(r) = i + Cy + = - ; =T . A.13a
1( ) 1 2 D (m+4)2(m+2)2 (m—|—2)2 C 6(1 _ vz)K ( )
p rm+3 A b

Zn=-2Cr-=—— 13
W, (r) 1 D (m+4)(m+2) ( )
On(r) = — L (A.13¢)

(m—+2)
M (r) = =2D(1 +v)Cy — sz (A.13d)
(m+4)(m+2)
Appendix B. Asymmetric eigenproblem
Mindlin’s plate equations may be written in vector form as
342

D1t = v)yv2w 4 (1 4 v)vao] — xGn(w + ww) = P ¥ (B.1)

2 =2
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2

d

KGh(V?w + @) + p = pha—: (B.2)
ER

@=V¥, D=

where W is the vector of rotations, w is transverse displacement, (p, v) are density and Poisson ratio, (E, G)
are Young’s and shear moduli, x is shear constant, / is thickness, ¢ is time, p is applied pressure, V? is the
Laplacian and V is the gradient operator. Taking the divergence of (B.1)

ph’ O*®
DV?*® — kGh(® + Vw) = ST (B.3)
Eliminating @ from (B.2) and (B.3)
1 o 1 @ 12 @ 1 1 1 o
2 _ -~ 2 _ -~ o= e 2 _ -~ B4
[(V c? aﬂ) <V c? 8t2> + c2h? GIZ]W {D KkGh <V c? a#)]p (B4)
E
e=—Lt 2%
p(1 —v?) p
Eliminating V2w from (B.2) and (B.3) yields
[, ph & *w
Taking the curl of (B.1)
(D ph’ &?

from which it can be inferred that (V x ¥) is not a function of w while ¥ may actually be expressed as
¥ =Vigw)]+VxTI (B.7)

where I' is a vector potential for ¥ independent of w. Substituting (B.7) in (B.5) using the definition of @
yields

h o *w
D 2 _ p_ . 2 — h_ _ B
[ Vi aﬂ}vg P =P (B3)
Substituting (B.7) in (B.6) using the identity
VxVxA=V(V-A) - VA (B.9)
produces
‘D ) B,
_E(I—V)V —KGh—pE@ VI =0 (B.10)
Defining t = VI, reduces (B.10) to
[ 12k 2 0?
2 _——_——_——_— —— =
N (= atz]c 0 (B.11)

For a solid disk and periodic motions in time with frequency w, the homogeneous solution of (B.4) takes
the form
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w(r, 0,1) = w(r) cos nfe' (B.12a)
w(r) = CiJ,(kir) + Cod,(kar) (B.12b)
— 2Bk + B, =0 (B.12¢c)
12+, o (@ 12
ﬁl 2 C2C2 —5 5, W, B2:C_§(C_§_h_2

where (r, 0) are radial and circumferential coordinates, n is circumferential wave number, i = v/—1. Since g
is a function of w, and from (B.8) linear with w, it can be expressed like (B.12a) and (B.12b) as

gi(r) = Cyu(kyr), Vigi=—kjg;, j=1,2 (B.13)
Substituting (B.13) in (B.8) yields
? 1202
[ K+ c‘]kz o= —7522C (B.14)
then using (B.4), Eq. (B.14) simplifies to
1 w?
Taking the gradient of (B.13)
0 n
ng: <a,—;>cgj.]n(kjl") (B16)
Furthermore, since t and ¥ are orthogonal, and W is in the plane of the disk then t = (0,0,7,) and
1, = CoJ, (kor) (B.17)
Substituting (B.17) in (B.11) produces the dispersion relation
2w? 12k
2 _ _eh B.18
ke (I=v)e2  h? ( )
Eq. (B.18) exhibits a cut-off above
: 12¢,
o, = /6 (1—v)‘;Z :‘/;c (B.19)

which is the same as that in (B.12¢). Finally, using x, in (B.18) and since I' and t are parallel then
'=(0,0,T.), and

I, = CrJ,(k.r) (B.20)
Taking the curl of (B.20)
VxT = <f - g)chn(lw) (B.21)
r’or

Substituting (B.16) and (B.21) in (B.7) determines the solutions

W, (r,0,1) = cos n@e"‘”{ N k) + g cFJ,,(k,r)} (B.22a)

j=1
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2
Wo(r,0,0) = sinn0e” S S =2 Cod (yr) — kCrJ) (ker) (B.22b)
~Copk
j=1
) 2
w(r,0,t) = cosnfe'™ Z CiJ,(k;r) (B.22¢)
j=1

where C,; is related to C; by (B.15).
Moments and shear resultants at the boundary are expressed in terms of (,,y,, w) as

_p| W (Ve 1
M,,.—D[ar—i—v(r—kr 20 (B.23a)
_ D —v)[1dy, Yy Yy
M,y = 3 [r 20 + Pl (B.23b)
O, = kGh (a_w + %) (B.23c)
or
For a free edge
Mrr(rd) = Mr(‘?‘(rd> = Qr(rd) =0 (B24a)
and for a simply supported edge
M, (ra) = y(ra) = w(rg) =0 (B.24b)

Substituting (B.22a)—(B.22c) in (B.23a)—(B.23c) then in either (B.24a) or (B.24b) produces the implicit ei-
genvalue problem

B(ry)C=0=detB| =0 (B.25a)
where B is a 3 x 3 matrix of the fundamental solutions in (,,,, w) and their first derivatives, and
C={C,0C,Cr}' (B.25b)

{V,,, ¥y, w.} can be expanded in terms of the eigenset {w,, 1,,, Non, ©n}-
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